skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cunha, Ana Paula"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Over the past decade, Brazil has experienced severe droughts across its territory, with important implications for soil moisture dynamics. Soil moisture variability has a direct impact on agriculture, water security and ecosystem services. Nevertheless, there is currently little information on how soil moisture across different biomes responds to drought. In this study, we used satellite soil moisture data from the European Space Agency, from 2009 to 2015, to analyze differences in soil moisture responses to drought for each biome of Brazil: Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa and Pantanal. We found an overall soil moisture decline of −0.5 % yr−1 (p<0.01) at the national level. At the biome level, Caatinga presented the most severe soil moisture decline (−4.4 % yr−1), whereas the Atlantic Forest and Cerrado biomes showed no significant trend. The Amazon biome showed no trend but had a sharp reduction of soil moisture from 2013 to 2015. In contrast, the Pampa and Pantanal biomes presented a positive trend (1.6 % yr−1 and 4.3 % yr−1, respectively). These trends are consistent with vegetation productivity trends across each biome. This information provides insights into drought risk reduction and soil conservation activities to minimize the impact of drought in the most vulnerable biomes. Furthermore, improving our understanding of soil moisture trends during periods of drought is crucial to enhance the national drought early warning system and develop customized strategies for adaptation to climate change in each biome. 
    more » « less